Главная
Study mode:
on
1
Introduction
2
Data
3
Species
4
Date variable
5
Map
6
Village Visualization
7
Building a model
8
Preprocessing
9
Stepother
10
Results
11
Data Preprocessing
12
Date Column
13
Downsample
14
Model specification
15
Tuning
16
Workflow
17
Preprocessor
18
Parallel processing
19
Tuning results
20
Plotting
21
Tuning parameters
22
Updated grid
23
Regular grid
24
Transparent grid
25
Finding best values
26
Finalizing model spec
27
Adding the final model
28
Global variable importance
29
Testing data
30
Final workflow
31
Last fit
Description:
Learn how to tune hyperparameters for random forest models using tidymodels in this comprehensive tutorial. Explore #TidyTuesday data on San Francisco trees to build, preprocess, and optimize a predictive model. Discover techniques for data visualization, feature engineering, and model evaluation. Master parallel processing for efficient tuning, interpret results through informative plots, and implement various grid search strategies. Finalize the model specification, assess variable importance, and evaluate performance on test data. Gain practical insights into advanced machine learning workflows using R and tidymodels.

Tuning Random Forest Hyperparameters with Tidymodels

Julia Silge
Add to list