Главная
Study mode:
on
1
Intro
2
DYNAMICS
3
PATTERNS
4
2D Kolmogorov Flow
5
Sublevel Set Persistent Homology
6
Bottleneck Distance in per
7
Point Cloud Persistent Homology
8
Dealing with Multiple Time Scales
9
Algebraic Stability Theorem for Generalized Interleavings
10
2D Rayleigh-Bénard Convection : Spiral Defect Chaos
11
Lyapunov Vectors and SDC
12
Topological Defects + Canonical Pattern Classification
13
Critical Point Pairings and Persistent Homology
14
Persistent Homology Defects
15
Finding a Correspondence...
16
Tangled Vines in a Vineyard of Persistence Diagrams
17
Linear Interpolation vs. Actual Flow
18
BEYOND PERSISTENCE MODULES
19
3D Navier-Stokes: Fully-developed Turbulence
20
Diffusion Maps
21
Landscape Metric on per
22
Diffusion Map Embedding of 512 Vorticity Fields
23
RESULT:Uncovered a New Relationship
24
Tsurushima Mechanism for HCCI
25
Landscape l'Speed Profiles
26
Differentiating Chemical Species by Speed Profile
27
Reaction Profile: R1
Description:
Explore the application of persistent homology in studying fluid flows through this comprehensive lecture. Delve into topics such as 2D Kolmogorov Flow, sublevel set persistent homology, and bottleneck distance in persistent homology. Examine the challenges of dealing with multiple time scales and learn about the Algebraic Stability Theorem for Generalized Interleavings. Investigate 2D Rayleigh-Bénard Convection, focusing on spiral defect chaos, Lyapunov vectors, and topological defects. Discover how persistent homology can be used to classify canonical patterns and identify critical point pairings. Explore the concept of persistent homology defects and the challenges of finding correspondences in persistence diagrams. Compare linear interpolation with actual flow in fluid dynamics. Extend the discussion to 3D Navier-Stokes equations and fully-developed turbulence, utilizing diffusion maps and landscape metrics. Uncover a new relationship in fluid dynamics and examine the Tsurushima Mechanism for HCCI. Conclude by learning how to differentiate chemical species using speed profiles and reaction profiles. Read more

Studying Fluid Flows with Persistent Homology - Rachel Levanger

Institute for Advanced Study
Add to list