Главная
Study mode:
on
1
NPTEL: Deep Learning
2
Lecture 01 : Introduction
3
Lecture 02 : Feature Descriptor - I
4
Lecture 03 : Feature Descriptor - II
5
Lecture 04 : Bayesian Learning - I
6
Lecture 05 : Bayesian Learning - II
7
Lecture 06 : Discriminant Function - I
8
Lecture 07 : Discriminant Function - II
9
Lecture 08 : Discriminant Function - III
10
Lecture 09 : Linear Classifier
11
Lecture 10 : Linear Classifier - II
12
Lecture 11 : Support Vector Machine - I
13
Lecture 12 : Support Vector Machine - II
14
Lecture 13 : Linear Machine
15
Lecture 14 : Multiclass Support Vector Machine - I
16
Lecture 15 : Multiclass Support Vector Machine -II
17
Lecture 16 : Optimization
18
Lecture 17 : Optimization Techniques in Machine Learning
19
Lecture 18 : Nonlinear Functions
20
Lecture 19 : Introduction to Neural Network
21
Lecture 20 : Neural Network -II
22
Lecture 21 : Multilayer Perceptron
23
Lecture 22 : Multilayer Perceptron - II
24
Lecture 23 : Backpropagation Learning
25
Lecture 24 : Loss Function
26
Lecture 25 : Backpropagation Learning - Example
27
Lecture 26 : Backpropagation Learning- Example II
28
Lecture 27 : Backpropagation Learning- Example III
29
Lecture 28 : Autoencoder
30
Lecture 29 : Autoencoder Vs. PCA I
31
Lecture 30 : Autoencoder Vs. PCA II
32
Lecture 31 : Autoencoder Training
33
Lecture 32 : Autoencoder Variants I
34
Lecture 33 : Autoencoder Variants II
35
Lecture 34 : Convolution
36
Lecture 35 : Cross Correlation
37
Lecture 36 : CNN Architecture
38
Lecture 37 : MLP versus CNN, Popular CNN Architecture: LeNet
39
Lecture 38 : Popular CNN Architecture: AlexNet
40
Lecture 39 : Popular CNN Architecture: VGG16, Transfer Learning
41
Lecture 40 : Vanishing and Exploding Gradient
42
Lecture 41 : GoogleNet
43
Lecture 42 : ResNet, Optimisers: Momentum Optimiser
44
Lecture 43 : Optimisers: Momentum and Nesterov Accelerated Gradient (NAG) Optimiser
45
Lecture 44 : Optimisers: Adagrad Optimiser
46
Lecture 45 : Optimisers: RMSProp, AdaDelta and Adam Optimiser
47
Lecture 46 : Normalization
48
Lecture 47 : Batch Normalization-I
49
Lecture 48 : Batch Normalization-II
50
Lecture 49 : Layer, Instance, Group Normalization
51
Lecture 50 : Training Trick, Regularization,Early Stopping
52
Lecture 51 : Face Recognition
53
Lecture 52 : Deconvolution Layer
54
Lecture 53 : Semantic Segmentation - I
55
Lecture 54 : Semantic Segmentation - II
56
Lecture 55 : Semantic Segmentation - III
57
Lecture 56: Image Denoising
58
Lecture 57 : Variational Autoencoder
59
Lecture 58 : Variational Autoencoder - II
60
Lecture 59 : Variational Autoencoder - III
61
Lecture 60 : Generative Adversarial Network
Description:
COURSE OUTLINE : The availability of a huge volume of Image and Video data over the internet has made the problem of data analysis and interpretation a really challenging task. Deep Learning has proved itself to be a possible solution to such Computer Vision tasks. Not only in Computer Vision, but Deep Learning techniques are also widely applied in Natural Language Processing tasks. In this course, we will start with traditional Machine Learning approaches, e.g. Bayesian Classification, Multilayer Perceptron etc. and then move to modern Deep Learning architectures like Convolutional Neural Networks, Autoencoders etc. On completion of the course, students will acquire the knowledge of applying Deep Learning techniques to solve various real-life problems.

Deep Learning

NPTEL
Add to list