Главная
Study mode:
on
1
Axioms of Quantum Mechanics - Lec01 - Frederic Schuller
2
Banach Spaces - Lec02 - Frederic Schuller
3
Separable Hilbert spaces - L03 - Frederic Schuller
4
Projectors,bars and kets - Lec 04 - Frederic Schuller
5
Measure Theory -Lec05- Frederic Schuller
6
Integration of measurable functions - Lec06 - Frederic Schuller
7
Self adjoint and essentially self-adjoint operators - Lec 07 - Frederic Schuller
8
Spectra and perturbation theory - L08 - Frederic Schuller
9
Case study: momentum operator - Lec09 - Frederic Schuller
10
Inverse Spectral Theorem - L10 - Frederic Schuller
11
Spectral Theorem - L11 - Frederic Schuller
12
Stone's theorem & construction of observables - L12 - Frederic Schuller
13
Spin - L13 - Frederic Schuller
14
Composite systems - L14 - Frederic Schuller
15
Total spin of composite system - L15 - Frederic Schuller
16
Quantum Harmonic Oscillator - L16 - Frederic Schuller
17
Quantum Harmonic Oscillator - L17 - Frederic Schuller
18
The Fourier Operator - L18 - Frederic Schuller
19
The Schrodinger Operator - L19 - Frederic Schuller
20
Periodic potentials - L20 - Frederic Schuller
21
Periodic potentials - L21 - Frederic Schuller
Description:
Dive deep into the foundations of quantum mechanics through this comprehensive lecture series. Explore key concepts including axioms of quantum mechanics, Banach spaces, Hilbert spaces, and measure theory. Progress to advanced topics such as self-adjoint operators, spectral theory, and perturbation theory. Examine practical applications with case studies on momentum operators, spin systems, and composite systems. Delve into the quantum harmonic oscillator, Fourier operators, and Schrödinger operators. Conclude with an in-depth look at periodic potentials. Gain a thorough understanding of quantum theory from Professor Frederic Schuller over 21 lectures, providing a solid mathematical foundation for further study in quantum physics.

Quantum Theory

Friedrich–Alexander University Erlangen–Nürnberg
Add to list