Главная
Study mode:
on
1
1.1 Caltech Welcome - S.G. Djorgovski
2
1.2 JPL Welcome - R. Doyle and D. Crichton
3
2.1 Ashish Mahabal: Best Programming Practices (Part 1)
4
2.2 Ashish Mahabal: Best Programming Practices (Part 2)
5
2.3 Ashish Mahabal : Best Programming Practices (Part 3)
6
2.4 Ashish Mahabal : Best Programming Practices (Part 4)
7
3.1 Matthew Graham: Data (Part 1)
8
3.2 Matthew Graham: Data Models (Part 2)
9
3.3 Matthew Graham: Relational Databases (Part 3)
10
3.4 Matthew Graham: SQL 1 (Part 4)
11
3.5 Matthew Graham: Advanced SQL (Part 5)
12
3.6 Matthew Graham: Alternative database (Part 6)
13
4.1 Amy Braverman (Part 1): Inference and Uncertainty
14
4.2 Amy Braverman (Part 2): Basic Probability - 1
15
4.3 Amy Braverman (Part 3): Basic Probability - 2
16
4.4 Amy Braverman (Part 4): Basics of Inference - 1
17
4.5 Amy Braverman (Part 5): Basics of Inference - 2
18
4.6 Amy Braverman (Part 6): The Bootstrap
19
4.7 Amy Braverman (Part 7): Subsampling
20
5.1 Ashish Mahabal : R (Part 1)
21
5.2 Ashish Mahabal : R (Part 2)
22
5.3 Ashish Mahabal : R (Part 3)
23
5.4 Ashish Mahabal : R (Part 4)
24
5.5 Ashish Mahabal : R (Part 5)
25
5.6 Ashish Mahabal : R (Part 6)
26
5.7 Ashish Mahabal : R (Part 7)
27
6.1 Ciro Donalek: Introduction to Machine Learning: General Aspects
28
6.2 Ciro Donalek: Introduction to Machine Learning: Supervised Learning
29
6.3 Ciro Donalek: Introduction to Machine Learning: Unsupervised Learning
30
6.4 Ciro Donalek: Classification: general aspects
31
6.5 Ciro Donalek: Classification: Neural Networks
32
6.6 Ciro Donalek: Clustering: General Aspects
33
6.7 Ciro Donalek: Clustering: k-Means
34
6.8 Ciro Donalek: Clustering: Self-Organizing Maps
35
7.1 Thomas Fuchs: Lecture 1: Decision Trees
36
7.2 Thomas Fuchs: Lecture 2: Random Forests
37
7.3 Thomas Fuchs: Lecture 3: Properties of Random Forests
38
7.4 Thomas Fuchs: Lecture 4: Random Forests in Space Exploration
39
7.5 Thomas Fuchs: Lecture 5: Random Forests in Cancer Research
40
8.1 David Thompson (Part 1): Local Methods for Pattern Recognition
41
8.2 David Thompson (Part 2): Nearest Neighbors and the Curse of Dimensionality
42
8.3 David Thompson (Part 3): Feature Selection
43
8.4 David Thompson (Part 4): Linear Dimensionality Reduction
44
8.5 David Thompson (Part 5): Metric Learning
45
8.6 David Thompson (Part 6): Nonlinear Dimensionality Reduction: KPCA
46
9.1 Santiago Lombeyda: Lecture 1: What is Visualization?
47
9.2 Santiago Lombeyda: Lecture 2: Understanding the Landscape
48
9.3 Santiago Lombeyda: Lecture 3: A Tool Taxonomy
49
9.4 Santiago Lombeyda: Lecture 4: Principles of Data Representation
50
9.5 Santiago Lombeyda: Lecture 4a: ... on Color
51
9.6 Santiago Lombeyda: Lecture 4b: ... on Mapping Multiple Dimensions
52
9.7 Santiago Lombeyda: Lecture 5: Addressing Bottlenecks
53
9.8 Santiago Lombeyda: Lecture 6: Putting It All Together
54
10.1 Scott Davidoff (Part 1): Brief Introduction to Data Visualization
55
10.2 Scott Davidoff (Part 2): Perception and Dimensional Mapping
56
10.3 Scott Davidoff (Part 3): Visual Communication Fundamentals
57
10.4 Scott Davidoff (Part 4): Multi-dimensional Mapping
58
10.5 Scott Davidoff (Part 5): Graphs and Trees
59
10.6 Scott Davidoff (Part 6): Interaction
60
11.1 Introduction to Cloud Computing - J. Bunn
61
11.2 Algorithmic Approaches to Big Data - M. Graham
62
11.3 Matthew Graham: Semantics (Part 1)
63
11.4 Matthew Graham: Semantics (Part 2)
64
11.5 Practical Genetic Algorithms - J. Bunn
65
12.1 Chris Mattmann (Part 1): Big Data Architecture: Fundamentals
66
12.2 Chris Mattmann (Part 2): Big Data Architecture: Fundamentals
67
12.3 Chris Mattmann (Part 3): Big Data Architecture: Fundamentals
68
12.4 Chris Mattmann (Part 4): Content Detection and Analysis for Big Data
69
12.5 Chris Mattmann (Part 5): Content Detection and Analysis for Big Data
70
12.6 Chris Mattmann (Part 6): Content Detection and Analysis for Big Data
Description:
Dive into a comprehensive 19-hour course on Big Data Analytics offered by the California Institute of Technology. Explore best programming practices, data models, relational databases, SQL, and alternative databases. Learn about inference, uncertainty, and probability basics. Master the R programming language for data analysis. Delve into machine learning concepts, including supervised and unsupervised learning, classification, and clustering techniques. Study decision trees, random forests, and their applications in space exploration and cancer research. Examine pattern recognition, dimensionality reduction, and feature selection methods. Discover data visualization principles, tools, and techniques for effective communication. Investigate cloud computing, algorithmic approaches to big data, semantics, and genetic algorithms. Conclude with an in-depth look at big data architecture fundamentals and content detection and analysis for large-scale datasets.

Big Data Analytics

California Institute of Technology
Add to list