Главная
Study mode:
on
1
Intro
2
Build method update
3
Build decoder
4
Add decoder input
5
Add dense layer
6
Add reshape layer
7
Add convolutional transpose layers
8
Add output layer
9
Build decoder recap
10
Summary method update
11
Autoencoder instantiation + architecture summary
12
What's up next?
Description:
Explore the implementation of autoencoders in Python and Keras, focusing on building the decoder component. Learn to update the build method, construct the decoder architecture, add input layers, dense layers, reshape layers, and convolutional transpose layers. Discover how to create the output layer, recap the decoder construction process, and update the summary method. Gain insights into autoencoder instantiation and architecture summarization. Follow along with code examples and practical demonstrations to enhance your understanding of autoencoder implementation techniques.

How to Implement Autoencoders in Python and Keras - The Decoder

Valerio Velardo - The Sound of AI
Add to list
0:00 / 0:00