Главная
Study mode:
on
1
Introduction
2
Welcome
3
The data
4
Exploration
5
Avatar Palette
6
DataFrame
7
Weighted Log Odds
8
New Table
9
Graphing
10
Building the model
11
Class imbalance
12
Preprocessing
13
Results
14
Evaluation
15
Variable importance
16
Variable important scores
Description:
Learn to build a predictive text model using R and tidymodels to identify speakers from Avatar: The Last Airbender dialogue. Explore the #TidyTuesday Last Airbender dataset, create visualizations with custom color palettes, and handle class imbalance in the data. Implement preprocessing techniques, evaluate model performance, and calculate model-agnostic variable importance scores to gain insights into the most influential features for speaker prediction.

Build a Predictive Text Model for Avatar: The Last Airbender with Tidymodels

Julia Silge
Add to list
0:00 / 0:00