Главная
Study mode:
on
1
- Video Overview
2
- Getting Started with Python Pandas | Google Colab
3
- Getting Started with Python Pandas | Local Environment Setup Cloning code, using virtual environment, VS Code
4
- Intro to Dataframes | Creating DataFrames, Index/Columns, Basic Functionality
5
- Loading in DataFrames from Files CSV, Excel, Parquet, etc.
6
- Accessing Data | .head .tail .sample
7
- Accessing Data | .loc .iloc
8
- Setting DataFrame Values w/ loc & iloc
9
- Accessing Single Values | .at .iat
10
- Accessing Data | Grab Columns, Sort Values, Ascending/Descending
11
- Iterating over a DataFrame df with a For Loop | df.iterrows
12
- Filtering Data | Syntax Options, Numeric Values, Multiple Conditions
13
- Filtering Data | String Operations, Regular Expressions Regex
14
- Filtering Data | Query Functions
15
- Adding / Removing Columns | Basics, Conditional Values, Math Operations, Renaming Columns
16
- Adding / Removing Columns | String Operations, Datetime pd.to_datetime Operations
17
- Saving our Updated DataFrame df.to_csv, df.to_excel, df.to_parquet, etc
18
- Adding / Removing Columns | Using Lambda & Custom Functions w/ .apply
19
- Merging & Concatenating Data | pd.merge, pd.concat, types of joins
20
- Handling Null Values NaNs | .fillna .interpolate .dropna .isna .notna
21
- Aggregating Data | value_counts
22
- Aggregating Data | Using Groupby - groupby .sum .mean .agg
23
- Aggregating Data | Pivot Tables
24
- Groupby combined with Datetime Operations
25
- Advanced Functionality | .shift .rank .cumsum .rolling
26
- New Functionality | Pandas 1.0 vs Pandas 2.0 - pyarrow
27
- New Functionality | GitHub Copilot & OpenAI ChatGPT
28
- What Next?? | Continuing your Python Pandas Learning…
Description:
Dive into a comprehensive Python Pandas tutorial that covers essential data science techniques for analyzing and manipulating tabular data. Learn to set up your environment, work with DataFrames, load data from various file formats, access and manipulate data, handle missing values, and perform advanced operations. Explore new features in Pandas 2.0, integrate AI tools like GitHub Copilot and ChatGPT into your workflow, and discover best practices for data analysis. Perfect for beginners and experienced users alike, this tutorial provides hands-on examples and practical insights to enhance your data science skills using Python Pandas.

Complete Python Pandas Data Science Tutorial - 2024 Updated Edition

Keith Galli
Add to list