Главная
Study mode:
on
1
Introduction
2
What is Python
3
What is pandas
4
What is numpy
5
What are data frames
6
Pandas vs R
7
Pandas vs SQL
8
Demo
9
Jupiter Notebook
10
Adventureworks Play
11
PD
12
Read CSV
13
DataFrame
14
Description
15
Numerics
16
Internet Sales
17
Chaining Methods
18
Filtering Methods
19
Performant
20
Ilog
21
Iloka
22
Row Subscript
23
Set Index
24
DropEqualFalse
25
Loke
26
Range
27
Index Access
28
Filter Access
29
Update Data
30
Export Data
31
Reset Index
32
Sort
33
Save
34
Pickle
35
GroupBy
36
PivotTable
37
Joining
38
Adding a new table
39
Merge statement
40
Left join
41
Concatenation
42
Missing Values
43
Explanation
44
Pandas Journey
45
References
Description:
Learn essential data wrangling techniques using Python's Pandas library in this 48-minute tutorial. Explore key concepts like data frames, CSV reading, filtering methods, and joining tables through practical examples using the Adventureworks dataset. Discover how to efficiently manipulate data with chaining methods, handle missing values, create pivot tables, and export results. Compare Pandas to R and SQL while gaining hands-on experience with Jupyter Notebook. Master powerful data manipulation tools including iloc, loc, filtering, sorting, grouping, and merging to enhance your data analysis skills.

Kung Fu Data Wrangling in Python with Pandas

Bryan Cafferky
Add to list
0:00 / 0:00