mod09lec42 - Dimension of noetherian local rings - Part 1
44
mod09lec43 - Dimension of noetherian local rings - Part 2
45
mod09lec44 - Dimension of polynomial rings
46
mod09lec45 - Algebras over a field
47
mod10lec46 - Graded rings - Part 1
48
mod10lec47 - Graded rings - Part 2
49
mod10lec48 - Polynomial rings over fields
50
mod10lec49 - Hilbert series - Part 1
51
mod10lec50 - Hilbert Series - Part 2
52
mod11lec51 - Proj of a graded ring
53
mod11lec52 - Homogenization - Part 1
54
mod11lec53 - Homogenization - Part 2
55
mod11lec54 - More on graded rings
56
mod11lec55 - Free resolutions
57
mod12lec56 - Computing syzygies
58
mod12lec57 - Koszul complex
59
mod12lec58 - More on Koszul complexes
60
mod12lec59 - Castelnuovo Mumford regularity - Part 1
61
mod12lec60 - Castelnuovo Mumford regularity - Part 2
Description:
This is an introductory course in computational commutative algebra. Topics in a typical first course in commutative algebra are developed along with computations in Macaulay2. The emphasis will be on concrete computations, more than on giving complete proofs of theorems.
INTENDED AUDIENCE: Advanced undergraduate / post-graduate studentsPREREQUISITES: Introduction to the basic theory of rings, modulesINDUSTRIES SUPPORT: None