Главная
Study mode:
on
1
Computational Commutative Algebra - Intro video
2
mod01lec01 - Definitions
3
mod01lec02 - Homomorphisms
4
mod01lec03 - Quotient rings
5
mod01lec04 - Noetherian rings
6
mod01lec05 - Monomials
7
mod02lec06 - Initial ideals
8
mod02lec07 - Division algorithm
9
mod02lec08 - Grobner basis
10
mod02lec09 - Solving Polynomial Equations
11
mod02lec10 - Nullstellensatz - Part 1
12
mod03lec11 - Nullstellensatz - Part 2
13
mod03lec12 - Buchberger criterion
14
mod03lec13 - Monomial basis
15
mod03lec14 - Elimination
16
mod03lec15 - Modules - Part 1
17
mod04lec16 - Modules - Part 2
18
mod04lec17 - Localisation
19
mod04lec18 - Nakayama Lemma
20
mod04lec19 - Spectrum - Part 1
21
mod04lec20 - Spectrum - Part 2
22
mod05lec21 - Associated primes
23
mod05lec22 - Primary Decomposition
24
mod05lec23 - Support of a module
25
mod05lec24 - Associated primes
26
mod05lec25 - Prime avoidance
27
mod06lec26 - Saturation - Part 1
28
mod06lec27 - saturation - Part 2
29
mod06lec28 - saturation - Part 3
30
mod06lec29 - Morphisms - Part 1
31
mod06lec30 - Morphisms - Part 2
32
mod07lec31 - Integral extensions
33
mod07lec32 - Noether normalisation lemma
34
mod07lec33 - Noether normalisation lemma
35
mod07lec34 - Polynomial rings
36
mod07lec35 - Going up theorem
37
mod08lec36 - Artinian rings
38
mod08lec37 - Graded modules
39
mod08lec38 - Hilbert polynomial
40
mod08lec39 - Hilbert-Samuel polynomial
41
mod08lec40 - Artin Rees Lemma
42
mod09lec41 - Degree of Hilbert-Samuel polynomial
43
mod09lec42 - Dimension of noetherian local rings - Part 1
44
mod09lec43 - Dimension of noetherian local rings - Part 2
45
mod09lec44 - Dimension of polynomial rings
46
mod09lec45 - Algebras over a field
47
mod10lec46 - Graded rings - Part 1
48
mod10lec47 - Graded rings - Part 2
49
mod10lec48 - Polynomial rings over fields
50
mod10lec49 - Hilbert series - Part 1
51
mod10lec50 - Hilbert Series - Part 2
52
mod11lec51 - Proj of a graded ring
53
mod11lec52 - Homogenization - Part 1
54
mod11lec53 - Homogenization - Part 2
55
mod11lec54 - More on graded rings
56
mod11lec55 - Free resolutions
57
mod12lec56 - Computing syzygies
58
mod12lec57 - Koszul complex
59
mod12lec58 - More on Koszul complexes
60
mod12lec59 - Castelnuovo Mumford regularity - Part 1
61
mod12lec60 - Castelnuovo Mumford regularity - Part 2
Description:
This is an introductory course in computational commutative algebra. Topics in a typical first course in commutative algebra are developed along with computations in Macaulay2. The emphasis will be on concrete computations, more than on giving complete proofs of theorems. INTENDED AUDIENCE: Advanced undergraduate / post-graduate studentsPREREQUISITES: Introduction to the basic theory of rings, modulesINDUSTRIES SUPPORT: None

Computational Commutative Algebra

NPTEL
Add to list
0:00 / 0:00