Explore a 47-minute lecture on fractal uncertainty principle and quantum chaos presented by Semyon Dyatlov at the International Mathematical Union. Delve into the intricacies of classical/quantum correspondence and its limitations, examining results that rely on chaotic classical dynamics without classical counterparts. Discover key findings on Laplacian eigenfunctions, Schrödinger equation observability, and wave behavior on hyperbolic surfaces. Learn about the fractal uncertainty principle as a crucial tool in understanding quantum phenomena. Gain insights from collaborative research with renowned mathematicians, covering topics such as semiclassical measures, Arnold cat map, open quantum chaos, and spectral gaps. Access accompanying slides for visual support of complex mathematical concepts discussed throughout the presentation.