Главная
Study mode:
on
1
Intro - Linear Algebra
2
noc20-ma54-lec01_Notations, Motivation and Definition
3
noc20-ma54-lec02_Matrix: Examples, Transpose and Addition
4
noc20-ma54-lec03_Matrix Multiplication
5
noc20-ma54-lec04_Matrix Product Recalled
6
noc20-ma54-lec05_Matrix Product Continued
7
noc20-ma54-lec06_Inverse of a Matrix
8
noc20-ma54-lec07 - Introduction to System of Linear Equations
9
noc20-ma54-lec08 - Some Initial Results on Linear Systems
10
noc20-ma54-lec09 - Row Echelon Form (REF)
11
noc20-ma54-lec10 - LU Decomposition - Simplest Form
12
noc20-ma54-lec11 - Elementary Matrices
13
noc20-ma54-lec12 - Row Reduced Echelon Form (RREF)
14
noc20-ma54-lec13 - Row Reduced Echelon Form (RREF) Continued
15
noc20-ma54-lec14 - RREF and Inverse
16
noc20-ma54-lec15 - Rank of a matrix
17
noc20-ma54-lec16 - Solution Set of a System of Linear Equations
18
noc20-ma54-lec17 - System of n Linear Equations in n Unknowns
19
noc20-ma54-lec18 - Determinant
20
noc20-ma54-lec19 - Permutations and the Inverse of a Matrix
21
noc20-ma54-lec20 - Inverse and the Cramer's Rule
22
noc20-ma54-lec21 - Vector Spaces
23
noc20-ma54-lec22 - Vector Subspaces and Linear Span
24
noc20-ma54-lec23 - Linear Combination, Linear Independence and Dependence
25
noc20-ma54-lec24 - Basic Results on Linear Independence
26
noc20-ma54-lec25 - Results on Linear Independence Continued...
27
noc20-ma54-lec26 - Basis of a Finite Dimensional Vector Space
28
noc20-ma54-lec27 - Fundamental Spaces associated with a Matrix
29
noc20-ma54-lec28 - Rank - Nullity Theorem
30
noc20-ma54-lec29 - Fundamental Theorem of Linear Algebra
31
noc20-ma54-lec30 - Definition and Examples of Linear Transformations
32
noc20-ma54-lec31 - Results on Linear Transformations
33
noc20-ma54-lec32 - Rank-Nullity Theorem and Applications
34
noc20-ma54-lec33 - Isomorphism of Vector Spaces
35
noc20-ma54-lec34 - Ordered Basis of a Finite Dimensional Vector Space
36
noc20-ma54-lec35 - Ordered Basis Continued
37
noc20-ma54-lec36 - Matrix of a Linear transformation
38
noc20-ma54-lec37 - Matrix of a Linear transformation Continued...
39
noc20-ma54-lec38 - Matrix of Linear Transformations Continued...
40
noc20-ma54-lec40 -Inner Product Space
41
noc20-ma54-lec41 - Inner Product Continued
42
noc20-ma54-lec42 - Cauchy Schwartz Inequality
43
noc20-ma54-lec43 - Projection on a Vector
44
noc20-ma54-lec44 - Results on Orthogonality
45
noc20-ma54-lec45 - Results on Orthogonality
46
noc20-ma54-lec46
47
noc20-ma54-lec47
48
noc20-ma54-lec48
49
noc20-ma54-lec49
50
noc20-ma54-lec50
51
noc20-ma54-lec51
52
noc20-ma54-lec52
53
noc20-ma54-lec53
54
noc20-ma54-lec54
55
noc20-ma54-lec55
56
noc20-ma54-lec56
57
noc20-ma54-lec57
58
noc20-ma54-lec58
59
noc20-ma54-lec59
60
noc20-ma54-lec60
61
noc20-ma54-lec61
62
noc20-ma54-lec62
63
noc20-ma54-lec63
64
noc20-ma54-lec64
65
noc20-ma54-lec65
66
noc20-ma54-lec66
Description:
COURSE OUTLINE : The course will assume basic knowledge of class XII algebra and a familiarity with calculus. Even though, the course will start with defining matrices and operations associated with it. This will lead to the study of system of linear equations, elementary matrices, invertible matrices, the row-reduced echelon form of a matrix and a few equivalent conditions for a square matrix to be invertible. From here, we will go into the axiomatic definition of vector spaces over real and complex numbers, try to understand linear combination, linear span, linear independence and linear dependence and hopefully understand the basis of a finite dimensional vector space. ABOUT INSTRUCTOR : Prof. Arbind Kumar Lal interests are in algebraic graph theory.

Linear Algebra

NPTEL
Add to list
0:00 / 0:00