Explore the intricacies of surface composition and decomposition in R^n through this 44-minute lecture by Robert J Young for the International Mathematical Union. Delve into Lipschitz functions, quantitative nonorientability, and cellular cycles. Discover how to measure and bound nonorientability, and examine the proof for decomposing surfaces in R^n. Investigate the nonembeddability of the Heisenberg group and explore applications with Naor. Gain insights into advanced mathematical concepts and their practical implications in this comprehensive presentation.