Explore the convergence of computational complexity theory, quantum information, and operator algebras in this Richard M. Karp Distinguished Lecture. Delve into the groundbreaking "MIP* = RE" result, which resolves long-standing problems across multiple fields, including the 44-year-old Connes' Embedding Problem. Trace the evolution of ideas from the 1930s, covering Turing's universal computing machine, quantum entanglement, and von Neumann's operator theory, to cutting-edge developments in theoretical computer science and quantum computing. Gain insights into nonlocal games, interactive proofs, probabilistic checking, and the complexity of entanglement. Suitable for a general scientific audience, this talk requires no specialized background in complexity theory, quantum physics, or operator algebras.
A Tale of Turing Machines, Quantum-Entangled Particles, and Operator Algebras