Главная
Study mode:
on
1
2019 STAT115 Lect2.1 Microarrays
2
2019 STAT115 Lect2.2 Quantile Normalization
3
2019 STAT115 Lect2.3 RMA
4
2019 STAT115 Lect2.4 RMA Demo
5
2019 STAT115 Lect4.1 Hierarchical Clustering
6
2019 STAT115 Lect4.2 K-means Clustering
7
2019 STAT115 Lect4.3 Batch Effect Correction
8
2019 STAT115 Lect4.4 Gene Ontology
9
2019 STAT115 Lect4.5 Gene Set Enrichment Analyses
10
2019 STAT115 Lect5.1 Unsupervised Learning
11
2019 STAT115 Lect5.2 Principal Component Analysis
12
2019 STAT115 Lect5.3 Logistic Regression
13
2019 STAT115 Lect5.4 Supervised Learning
14
2019 STAT115 Lect6.1 Sequencing
15
2019 STAT115 Lect6.2 FASTQC
16
2019 STAT115 Lect6.3 Blast and Suffix Tree / Array
17
2019 STAT115 Lect6.4 Burrows-Wheeler Alignment
18
2019 STAT115 Lect6.5 SAM, BAM, and BED Files
19
2019 STAT115 Lect7.1 Intro to RNA-seq
20
2019 STAT115 Lect7.2 RNA-seq QC
21
2019 STAT115 Lect7.3 RNA-seq Expression Index
22
2019 STAT115 Lect7.4 DESeq2
23
2019 STAT115 Lect8.1 Intro to scRNA-seq
24
2019 STAT115 Lect8.2 QC and Visualize scRNA-seq
25
2019 STAT115 Lect8.3 Cluster and Annotate scRNA-seq
26
2019 STAT115 Lect8.4 Differential Expression on scRNA-seq
27
2019 STAT115 Lect9.1 scRNA-seq Continued
28
2019 STAT115 Lect9.2 Gene Expression Module Summary
29
2019 STAT115 Lect9.3 Expression Analyses Case Studies
30
2019 STAT115 Lect10.1 Transcription regulation
31
2019 STAT115 Lect10.2 Motif Finding Using Expectation Maximization
32
2019 STAT115 Lect10.4 Gibbs Sampler Intuitions
33
STAT115 Chapter 10.5 Motif Conservation and Modules
34
2019 STAT115 Lect11.1 ChIP-seq
35
2019 STAT115 Lect11.2 ChIP-seq Peak Calling and QC
36
2019 STAT115 Lect11.3 ChIP-seq Motif Finding and Collaborating TFs
37
2019 STAT115 Lect11.4 ChIP-seq Target Identification
38
2019 STAT115 Lect12.1 Intro to Epigenetics
39
2019 STAT115 Lect12.2 DNA Methylation
40
2019 STAT115 Lect12.3 Analyses of DNA Methylome
41
2019 STAT115 Lect12.4 Nucleosome Positioning
42
2019 STAT115 Lect14.1 Chromatin Interaction HiC
43
2019 STAT115 Lect14.2 3D Genome Structure
44
2019 STAT115 Lect14.3 3D Genome Dynamics
45
2019 STAT115 Lect14.4 Gene Regulatory Network
46
2019 STAT115 Lect15.1 SNPs, LD and Haplotypes
47
2019 STAT115 Lect15.2 Association Studies
48
2019 STAT115 Lect15.3 Issues on GWAS Studies
49
2019 STAT115 Lect15.4 eQTL Analyses
50
2019 STAT115 Lect16.1 EWAS Annotate RSNPs
51
2019 STAT115 Lect16.2 Module II Summary
52
2019 STAT115 Lect16.3 Gene Regulation Case Studies
53
2019 STAT115 Lect17.1 Intro to Hidden Markov Model
54
2019 STAT115 Lect17.2 HMM Forward and Backward Procedures
55
2019 STAT115 Lect17.3 HMM Viterbi Algorithm
56
2019 STAT115 Lect18.1 Overview of Cancer Genetics
57
2019 STAT115 Lect18.2 Tumor Mutation Calling
58
2019 STAT115 Lect18.3 Annotating Tumor Mutations
59
2019 STAT115 Lect18.4 Test Driver Mutations
60
2019 STAT115 Lect19.1 Cancer Subtyping
61
2019 STAT115 Lect19.1 Cancer Subtyping
62
2019 STAT115 Lect19.2 Basic Survival Analysis
63
2019 STAT115 Lect19.3 Cancer Mutation Types and Distributions
64
2019 STAT115 Lect19.4 Cancer Genomics Resources
65
2019 STAT115 Lect20.1 Cancer Targeted Therapy
66
2019 STAT115 Lect20.2 Cancer Drug Resistance
67
2019 STAT115 Lect20.3 Overcome Drug Resistance
68
2019 STAT115 Lect20.4 Synthetic Lethality
69
2019 STAT115 Lect21.1 Introduction of Cancer Immunotherapy
70
2019 STAT115 Lect21.2 Neoantigen Presentation
71
2019 STAT115 Lect21.3 Tumor Immune Infiltration
72
2019 STAT115 Lect21.4 Tumor Immune Repertoires
73
2019 STAT115 Lect22.1 Tumor Immune Cell Activation
74
2019 STAT115 Lect22.3 CRISPR Screens
75
2019 STAT115 Lect23.1 CRISPR Screen Analyses
76
2019 STAT115 Lect23.2 Cancer Epigenetics and CIMP
77
2019 STAT115 Lect23.3 HDAC and 5-AZA in Cancer
78
2019 STAT115 Lect23.4 CRISPR Screen and Epigenetic Regulators of Cancer Drug Response
79
2019 STAT115 Lect23.5 Personalized Combination Cancer Therapy
80
2019 STAT115 Lect24.1 Module III Review
81
2019 STAT115 Lect24.2 Course Summary
82
2019 STAT115 Lect24.3 Final Review
Description:
Explore a comprehensive lecture video series from Harvard University's spring 2019 STAT115/215 and BIOSTAT/BST282 courses on statistical and computational methods for analyzing genomic data. Delve into topics ranging from microarray analysis and clustering techniques to RNA sequencing, epigenetics, and cancer genomics. Learn about cutting-edge bioinformatics tools and methodologies, including principal component analysis, hidden Markov models, and CRISPR screens. Gain insights into gene regulation, transcription factors, and chromatin interactions. Discover approaches for analyzing cancer mutations, subtypes, and immunotherapy. Access additional course materials through the provided Harvard Canvas link for a deeper understanding of computational biology and bioinformatics.

STAT115

Harvard University
Add to list
0:00 / 0:00