Главная
Study mode:
on
1
2020 STAT115 Lect1.1 Bioinfo History
2
2020 STAT115 Lect1.2 Big Data Challenge
3
2020 STAT115 Lect1.3 Bioinfo vs Comp Bio
4
2020 STAT115 Lect1.4 Course Info
5
STAT115 Chapter 3.1 Three Generations of Sequencing
6
STAT115 Chapter 3.2 FASTQ and FASTQC
7
STAT115 Chapter 3.4 BLAST and Suffix Arrays
8
STAT115 Chapter 3.5.1 BWT and LF Mapping
9
STAT115 Chapter 3.5.2 Borrows-Wheeler Alignment
10
STAT115 Chapter 3.6 SAM and BAM files
11
2020 STAT115 Lect3.1 RNA-seq Experimental Design
12
2020 STAT115 Lect3.2 RNA-seq Alignment and QC
13
2020 STAT115 Lect3.3 RNA-seq Quantification
14
2020 STAT115 Lect3.4 RNA-seq Read Distribution
15
STAT115 Chapter 5.2 Differential RNA-seq
16
STAT115 Chapter 5.3 Multiple Hypotheses Testing and False Discovery Rate
17
STAT115 Chapter 5.5 Gene Ontology
18
STAT115 Chapter 5.6 Gene Set Enrichment Analyses
19
STAT115 Chapter 6.1/2 Hierarchical Clustering
20
STAT115 Chapter 6.3 K-means Clustering
21
STAT115 Chapter 6.4 Considerations of Kmeans Clustering
22
2020 STAT115 Lect6.1 KNN and MDS
23
2020 STAT115 Lect6.2 PCA
24
STAT115 Chapter 6.5 Batch Effect Removal
25
2020 STAT115 Lect8.1 scRNA-seq
26
2020 STAT115 Lect8.2 Processing and QC scRNA-seq
27
2020 STAT115 Lect8.3 scRNA-seq Clustering and Visualization
28
2020 STAT115 Lect8.4 Differential Expression in scRNA-seq
29
2020 STAT115 Lect9.1 scRNA-seq Batch Effect Removal
30
2020 STAT115 Lect9.2 Gene Expression Module Summary
31
2020 STAT115 Lect9.3 Gene Expression Analysis Scenario
32
STAT115 Chapter 10.1 Transcription Regulation
33
STAT115 Chapter 10.2 Expectation Maximization for Motif Finding
34
STAT115 Chapter 10.3 Gibbs Sampling for Motif Finding
35
STAT115 Chapter 10.4 Motif Finding General Practices
36
STAT115 Chapter 11.1 ChIP-seq
37
STAT115 Chapter 11.2 ChIP-seq Peak Calling with MACS and QC
38
STAT115 Chapter 11.3 TF Interactions from ChIP-seq
39
STAT115 Chapter 11.4 TF Target Genes from ChIP-seq
40
2020 STAT115 Lect12.1 Epigenetics
41
2020 STAT115 Lect12.2 DNA Methylation
42
2020 STAT115 Lect12.3 DNA Methylation Function
43
2020 STAT115 Lect12.4 Nucleosome Positioning
44
2020 STAT115 Lect13.1 Histone Modifications
45
2020 STAT115 Lect13.2 Histone marks on enhancers
46
2020 STAT115 Lect13.3 Histone marks on genes
47
STAT115 Chapter 13.7 DNase-seq
48
2020 STAT115 Lect13.5 ATAC-seq
49
2020 STAT115 Lect15.1 HiC Introduction
50
2020 STAT115 Lect15.2 Topologically Associating Domains
51
2020 STAT115 Lect15.3 Chromatin Compartments
52
2020 STAT115 Lect15.4 Regulatory Network
53
2020 STAT115 Lect16.1 Intro to Single-Cell ATAC-seq
54
2020 STAT115 Lect16.2 Preprocessing and QC scATAC-seq
55
2020 STAT115 Lect16.3 Analysis of scATAC-seq
56
2020 STAT115 Lect16.4 Integrating scATAC-seq with scRNA-seq
57
2020 STAT115 Lect17.1 Module II Review
58
2020 STAT115 Lect17.2 Module II Practice Scenarios
59
Overview of Cistrome Related Tools from Liu Lab
60
2020 STAT115 Lect17.3 SNP and GWAS Intro
61
2020 STAT115 Lect17.4 GWAS Artifacts and eQTL
62
STAT115 Chapter 18.1 Intro Functional Annotate GWAS
63
STAT115 Chapter 18.2 GWAS Functional Enrichment
64
STAT115 Chapter 18.3 Find Causal SNPs
65
STAT115 Chapter 18.4 Predict disease risk
66
STAT115 GWAS Catalogue
67
STAT115 HaploReg
68
STAT115 LD Link
69
STAT115 Chapter 23.1 Introduction to Cancer Genome Analysis
70
STAT115 Chapter 23.2 Cancer. Mutation Characterization
71
STAT115 Chapter 23.3 Cancer Mutation Patterns
72
STAT115 Chapter 23.4 Tumor Purity and Clonality
73
STAT115 Chapter 23.5 Interpret Tumor Mutations
74
STAT115 Chapter 23.6 Find Cancer Genes
75
STAT115 Chapter 23.7 Summary and Future
76
STAT115 OpenCRAVAT Demo
77
STAT115 Chapter 24.1 Tumor Subtypes
78
STAT115 Chapter 24.2 Survival Analysis
79
STAT115 Chapter 24.3 Oncogenes and Tumor Suppressor Mutations
80
STAT115 Chapter 24.4 Cancer Epigenetics
81
2020 STAT115 Lect20.5 Cancer Hallmarks
82
STAT115 Chapter 26.1 Intro to Cancer Immunotherapy
83
STAT115 Chapter 26.2 HLA and Neoantigen Presentation
84
2020 STAT115 Lect22.3 Tumor Immune Deconvolution
85
2020 STAT115 Lect22.4 Immune Receptor Repertoires
86
2020 STAT115 Lect23.1 Immune Signaling
87
2020 STAT115 Lect23.2 Immunotherapy Biomarkers
88
2020 STAT115 Lect23.3 CRISPR Screens
89
2020 STAT115 Lect23.4 CRISPR Screen Computational Challenges
90
2020 STAT115 Lect24.1 Module III Review
91
2020 STAT115 Lect24.2 Course Review
92
2020 STAT115 Lect24.3 Final Logistics
Description:
Explore a comprehensive bioinformatics course from Harvard University covering key topics in genomics, transcriptomics, and cancer biology. Delve into sequencing technologies, RNA-seq analysis, clustering methods, single-cell genomics, epigenetics, and GWAS. Learn about cancer genome analysis, tumor mutations, immunotherapy, and CRISPR screens. Gain practical skills in data analysis, quality control, and interpretation of genomic data. Master essential bioinformatics tools and techniques used in cutting-edge research and clinical applications.

STAT115 2020

Harvard University
Add to list
0:00 / 0:00