Главная
Study mode:
on
1
ML Lecture 0-1: Introduction of Machine Learning
2
ML Lecture 0-2: Why we need to learn machine learning?
3
ML Lecture 1: Regression - Case Study
4
ML Lecture 1: Regression - Demo
5
ML Lecture 2: Where does the error come from?
6
ML Lecture 3-1: Gradient Descent
7
ML Lecture 3-2: Gradient Descent (Demo by AOE)
8
ML Lecture 3-3: Gradient Descent (Demo by Minecraft)
9
ML Lecture 4: Classification
10
ML Lecture 5: Logistic Regression
11
ML Lecture 6: Brief Introduction of Deep Learning
12
ML Lecture 7: Backpropagation
13
ML Lecture 8-1: “Hello world” of deep learning
14
ML Lecture 8-2: Keras 2.0
15
ML Lecture 8-3: Keras Demo
16
ML Lecture 9-1: Tips for Training DNN
17
ML Lecture 9-2: Keras Demo 2
18
ML Lecture 9-3: Fizz Buzz in Tensorflow (sequel)
19
ML Lecture 10: Convolutional Neural Network
20
ML Lecture 11: Why Deep?
21
ML Lecture 12: Semi-supervised
22
ML Lecture 13: Unsupervised Learning - Linear Methods
23
ML Lecture 14: Unsupervised Learning - Word Embedding
24
ML Lecture 15: Unsupervised Learning - Neighbor Embedding
25
ML Lecture 16: Unsupervised Learning - Auto-encoder
26
ML Lecture 17: Unsupervised Learning - Deep Generative Model (Part I)
27
ML Lecture 18: Unsupervised Learning - Deep Generative Model (Part II)
28
ML Lecture 19: Transfer Learning
29
ML Lecture 20: Support Vector Machine (SVM)
30
ML Lecture 21-1: Recurrent Neural Network (Part I)
31
ML Lecture 21-2: Recurrent Neural Network (Part II)
32
ML Lecture 22: Ensemble
33
ML Lecture 23-1: Deep Reinforcement Learning
34
ML Lecture 23-2: Policy Gradient (Supplementary Explanation)
35
ML Lecture 23-3: Reinforcement Learning (including Q-learning)
36
ML Lecture 21-1: Recurrent Neural Network (Part I) English version
Description:
探索機器學習的全面課程,從基礎概念到高級技術。學習回歸、梯度下降、分類、邏輯回歸和深度學習的基本原理。掌握卷積神經網絡、半監督和無監督學習方法,包括線性方法、詞嵌入和自編碼器。深入研究深度生成模型、遷移學習、支持向量機和循環神經網絡。探索集成學習和深度強化學習的原理。通過實際演示和案例研究,獲得使用Keras和TensorFlow等流行工具的實踐經驗。適合希望全面了解現代機器學習技術的學習者。

Machine Learning

National Taiwan University
Add to list
0:00 / 0:00