Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Grab it
Explore the fundamentals of hydromechanical flow in fractures and its implications for subsurface utilization in this 1-hour 6-minute lecture from the University of Liverpool's Earth Sciences department. Delve into the challenges of predicting fault leakage through upscaling, covering topics from field studies to laboratory experiments and model development. Examine the role of multiphase flow in rough fractures for applications such as carbon and hydrogen storage, radioactive waste disposal, and geothermal energy. Learn about recent PhD projects, synchrotron beam experiments, and industry collaborations aimed at upscaling from lab to reservoir scale. Gain insights into stress permeability, anisotropy, Brazilian tests, jointness coefficient, surface area analysis, and multiphase flow dynamics. Discover the latest scanning techniques and processes for studying aperture distribution and connected flow. Consider the integration of monitoring tools and risk assessment in fault leakage prediction, while also addressing areas of uncertainty in the field.
Read more
Predicting Fault Leakage Through Upscaling: From Lab to Reservoir