Главная
Study mode:
on
1
Fluid Dynamics for Astrophysics
2
mod01lec01 - Introduction to the course
3
mod01lec02 - Continuum hypothesis, distribution function and stress-viscosity relation
4
mod01lec03 - Continuum hypothesis, distribution function and stress-viscosity relation - Recap
5
mod01lec04 - Fluid Kinematics
6
mod01lec05 - Fluid Kinematics - Recap
7
mod02lec06 - Conservation laws: Mass conservation and incomprehensibility
8
mod02lec07 - Conservation laws: Momentum conservation and Euler equation
9
mod02lec08 - Conservation laws - Recap
10
mod02lec09 - Potential flows
11
mod02lec10 - Bernoulli constant, its applications and voracity equation
12
mod03lec11 - Recap - Potential flows, Bernoulli constant and its applications
13
mod03lec12 - Voracity dynamics -- Kelvin's voracity theorem and Magus effect
14
mod03lec13 - Navier-Stokes equation
15
mod03lec14 - Navier-Stokes equation (contd.) and energy equation
16
mod03lec15 - Energy equation in a conservative form
17
mod03lec16 - Boundary conditions in Navier-Stokes equation, d'Alembert's paradox
18
mod03lec17 - Poiseuille flow, deriving viscosity from microscopics
19
mod04lec18 - Dimensionless numbers -- Mach number, Reynolds number
20
mod04lec19 - Dimensionless numbers
21
mod04lec20 - Reynolds number and dynamic similarity
22
mod04lec21 - Reynolds number recap, Low Re flows, and drag on a sphere (Stokes law)
23
mod04lec22 - High Re flows -- turbulent drag law, vortex shedding and drag crisis
24
mod05lec23 - Lift on a body, introduction to compressible flows
25
mod05lec24 - Compressible flows -- derivation of sound speed and dispersion relation
26
mod05lec25 - Subsonic and supersonic flows
27
mod05lec26 - Propagation of sonic information, shock tube problem and piston problem
28
mod05lec27 - Criterion for neglect of compressibility, method of characteristics
29
mod06lec28 - Shock thickness
30
mod06lec29 - Shock thickness recap, shock jump conditions
31
mod06lec30 - Shock jump conditions (contd), transonic 1D flows, converging/diverging channels
32
mod06lec31 - Coverging/diverging channels, de Laval nozzle and its application to astrophysical jets
33
mod06lec32 - Spherically symmetric transonic flows
34
mod06lec33 - Spherically symmetric transonic flows (contd)
35
mod07lec34 - Solar wind : Parker's solution
36
mod07lec35 - Solar wind : Modifications in Parker's solution
37
mod07lec36 - Spherical accretion onto a compact object : Eddington luminosity and accretion rate
38
mod07lec37 - Spherical accretion onto a compact object : Solutions for flow properties
39
mod07lec38 - Spherical accretion (contd), disk accretion--Roche lobe overflow
40
mod08lec39 - Disk accretion : Mass conservation and vertical hydrostatic equilibrium
41
mod08lec40 - Disk accretion : Removal of angular momentum, Shakura-Sunyaev viscosity parameter
42
mod08lec41 - Disk accretion : Viscous dissipation and the energy equation, two-temperature criterion
43
mod08lec42 -Particle acceleration in astrophysical settings:Shocks & non-thermal energy distribution
44
mod08lec43 - Particle acceleration in astrophysical settings : Diffusive shock acceleration
45
mod09lec44 - Spherical blast waves : Bomb explosion and supernova explosion
46
mod09lec45 - Spherical blast waves : Sedov -Taylor solution
47
mod09lec46 - Spherical blast waves : Sedov - Taylor solution (contd.)
48
mod09lec47 - Magnetohydrodynamics (MHD) : Introduction
49
mod09lec48 - Magnetohydrodynamics (MHD) : The induction equation
50
mod10lec49 - Magnetohydrodynamics(MHD):Currents in MHD, momentum equation and magnetic stress tensor
51
mod10lec50 - Magnetohydrodynamics (MHD) : Magnetic stresses and magnetic buoyancy
52
mod10lec51 - Magnetohydrodynamics (MHD): Plasma beta, force-free fields and potential configurations
53
mod10lec52 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing
54
mod10lec53 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing (contd.), magnetic dynamos
55
mod10lec54 - Magnetohydrodynamics (MHD) : Dynamo theory
56
mod11lec55 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves
57
mod11lec56 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves and magnetosonic waves
58
mod11lec57 - Magnetohydrodynamics (MHD) : Waves in MHD - Magnetosonic waves
59
mod11lec58 - Magnetohydrodynamics (MHD) : Shocks in MHD
60
mod11lec59 - Magnetohydrodynamics (MHD) : Shocks in MHD - Shock jump conditions
61
mod12lec60 - Non-ideal MHD : Introduction to magnetic reconnection
62
mod12lec61 - Non-ideal MHD : Magnetic reconnection - The Sweet-Parker model
63
mod12lec62 - Non-ideal MHD : Magnetic reconnection - The Petscheck model
64
mod12lec63 - Sun's atmosphere : Solar corona and the coronal heating problem
65
mod12lec64 - Solar eruptions : Coronal Mass Ejections (CMEs) and solar flares
Description:
COURSE OUTLINE: This course provides a broad overview of fluid phenomena in Astrophysics. The first few weeks cover the basics of fluid dynamics, with an emphasis on compressible phenomena. These basic concepts will be applied in understanding astrophysical phenomena ranging from the solar wind to black hole accretion disks. Magnetic fields are often important in astrophysical situations - we therefore treat the basics of magnetohydrodynamics and use it to understand astrophysical dynamos and jets. Students of this course will be equipped with the basics needed for understanding the research literature in several areas in astrophysics.

Fluid Dynamics for Astrophysics

NPTEL
Add to list
0:00 / 0:00