Главная
Study mode:
on
1
Calculus 1.1 A Preview of Calculus
2
Calculus 1.2.1 Find Limits Graphically and Numerically: Estimate a Limit Numerically or Graphically
3
Calculus 1.2.2 Find Limits Graphically and Numerically: When Limits Fail to Exist
4
Calculus 1.2.3 Find Limits Graphically and Numerically: The Formal Definition of A Limit
5
Calculus 1.3.1 Evaluating Limits Using Properties of Limits
6
Calculus 1.3.2 Evaluating Limits By Dividing Out or Rationalizing
7
Calculus 1.3.3 Evaluating Limits Using the Squeeze Theorem
8
Calculus 1.4.1 Continuity on Open Intervals
9
Calculus 1.4.2 Continuity on Closed Intervals
10
Calculus 1.4.3 Properties of Continuity
11
Calculus 1.4.4 The Intermediate Value Theorem
12
Calculus 1.5.1 Determine Infinite Limits
13
Calculus 1.5.2 Determine Vertical Asymptotes
14
Calculus 2.1.1 Find the Slope of a Tangent Line
15
Calculus 2.1.2 Derivatives Using the Limit Definition
16
Calculus 2.1.3 Differentiability and Continuity
17
Calculus 2.2.1 Basic Differentiation Rules
18
Calculus 2.2.2 Rates of Change
19
Calculus 2.3.1 The Product and Quotient Rules
20
Calculus 2.3.2 Derivatives of Trigonometric Functions
21
Calculus 2.3.3 Higher Order Derivatives
22
Calculus 2.4.1 The Chain Rule
23
Calculus 2.4.2 The General Power Rule
24
Calculus 2.4.3 Simplifying Derivatives
25
Calculus 2.4.4 Trigonometric Functions and the Chain Rule
26
Calculus 2.5.1 Implicit and Explicit Functions
27
Calculus 2.5.2 Implicit Differentiation
28
Calculus I - 2.6.1 Related Rates - Water Ripples (2D Circle)
29
Calculus I - 2.6.2 Related Rates - Balloon Inflation (Sphere)
30
Calculus I - 2.6.3 Related Rates - Modeling with Triangles
31
Calculus 3.1.1 Extrema of a Function on an Interval
32
Calculus 3.1.2 Relative Extrema of a Function on an Open Interval
33
Calculus 3.1.3 Find Extrema on a Closed Interval
34
Calculus 3.2.1 Rolle’s Theorem
35
Calculus 3.2.2 The Mean Value Theorem
36
Calculus 3.3.1 Increasing and Decreasing Intervals
37
Calculus 3.3.2 The First Derivative Test
38
Calculus 3.4.1 Intervals of Concavity
39
Calculus 3.4.2 Points of Inflection
40
Calculus 3.4.3 The Second Derivative Test
41
Calculus 3.4.4 Putting It All Together
42
Calculus 3.5.1 Determine Finite Limits at Infinity
43
Calculus 3.5.2 Determine Horizontal Asymptotes of a Function
44
Calculus 3.5.3 Horizontal Asymptotes - Tricky Examples
45
Calculus 3.5.4 Determine Infinite Limits at Infinity
46
Calculus 3.6.1 A Summary of Curve Sketching
47
Calculus 3.6.2 Curve Sketching - Full Practice
48
Calculus 3.7.1 Optimization Problems
49
Calculus 3.7.2 Optimization Practice
50
Calculus 4.1.1 Antiderivatives
51
Calculus 4.1.2 Basic Integration Rules
52
Calculus 4.1.3 Find Particular Solutions to Differential Equations
53
Calculus 4.2.1 Sigma Notation
54
Calculus 4.2.2 The Concept of Area
55
Calculus 4.2.3 The Approximate Area of a Plane Region
56
Calculus 4.2.4 Finding Area By The Limit Definition
57
Calculus 4.3.1 Riemann Sums
58
Calculus 4.3.2 Definite Integrals
59
Calculus 4.3.3 Properties of Definite Integrals
60
Calculus 4.4.1 The Fundamental Theorem of Calculus
61
Calculus 4.4.2 The Mean Value Theorem for Integrals
62
Calculus 4.4.3 The Average Value of a Function
63
Calculus 4.4.4 The Second Fundamental Theorem of Calculus
64
Calculus 4.5.1 Use Pattern Recognition in Indefinite Integrals
65
Calculus 4.5.2 Change of Variables for Indefinite Integrals
66
Calculus 5.1.1 Properties of the Natural Logarithmic Function
67
Calculus 5.1.2 The Number e
68
Calculus 5.1.3 The Derivative of the Natural Logarithmic Function
69
Calculus 5.2.1 The Log Rule for Integration
70
Calculus 5.2.2 Integrals of Trigonometric Functions
71
Calculus 5.3.1 Verify Functions are Inverses of One Another
72
Calculus 5.3.2 Determine Whether a Function Has An Inverse
73
Calculus 5.3.3 Find the Inverse of a Function
74
Calculus 5.3.4 Find the Derivative of an Inverse of a Function
75
Calculus 5.4.1 The Natural Exponential Function
76
Calculus 5.4.2 Derivatives of the Natural Exponential Function
77
Calculus 5.4.3 Integrals of the Natural Exponential Function
78
Calculus 5.5.1 Exponential Functions with Bases Other than e
79
Calculus 5.5.2 Differentiate and Integrate with Bases Other than e
80
Calculus 5.5.3 Applications of Bases Other than e
81
Calculus 5.6.1 Indeterminate Forms
82
Calculus 5.6.2 L’Hôpital’s Rule
83
Calculus 5.7.1 Inverse Trigonometric Functions
84
Calculus 5.7.2 Derivatives of Inverse Trigonometric Functions
85
Calculus 5.8.1 Integrate Inverse Trigonometric Functions
86
Calculus 5.8.2 Integrate Using the Completing the Square Technique
Description:
Embark on a comprehensive journey through Calculus I with this extensive 13-hour course. Master fundamental concepts including limits, continuity, derivatives, and integrals. Explore topics such as the Squeeze Theorem, Rolle's Theorem, and L'Hôpital's Rule. Learn to sketch curves, solve optimization problems, and work with logarithmic and exponential functions. Develop skills in evaluating definite and indefinite integrals, and understand the applications of inverse trigonometric functions. Gain a solid foundation in calculus through detailed explanations, numerous examples, and practical problem-solving techniques.

Calculus I - Entire Course

Kimberly Brehm
Add to list
0:00 / 0:00