Explore the fundamental concepts of topology in this comprehensive 10-hour course. Delve into metric spaces, convergence, completeness, open and closed sets, compactness, continuity, and connectedness. Examine intriguing topics like the Cantor set, Baire Category Theorem, and the Topologist Sine Curve. Analyze the Heine Borel Theorem, sequential compactness, and the finite intersection property. Investigate continuity in Rn and topology, and understand homeomorphisms. Conclude with a challenging UC Berkeley Math PhD Entrance Exam question to test your grasp of topological concepts.